Optimisation of chemical oxygen demand removal from landfill leachate by sonocatalytic degradation in the presence of cupric oxide nanoparticles.
Abstract:Leachate is the liquid formed when waste breaks down in the landfill and water filters through that waste. This liquid is very toxic and can pollute the land, ground water, and water resources. In most countries, it is mandatory for landfills to be protected against leachate. In addition to all other harms to the environment, disposal of raw landfill leachate can be a major source of hazard to closed water bodies. Hence, treatment of landfill leachate is considered an essential step prior to its discharge from source. This article describes the sonocatalytic degradation of chemical oxygen demand in landfill leachate using cupric oxide nanoparticles as sonocatalyst (cupric oxide/ultrasonic) and aims to establish this method as an effective alternative to currently used approaches. An ideal experimental design was carried out based on a central composite design with response surface methodology. The response surface methodology was used to evaluate the effect of process variables including pH values (3, 7, 11), cupric oxide nanoparticles dose (0.02, 0.035, 0.05 g), reaction time (10, 35, 60 minutes), ultrasonic frequency (35, 37, 130 KHz), and their interaction towards the attainment of their optimum conditions. The derived second-order model, including both significant linear and quadratic terms, seemed to be adequate in predicting responses (R2 = 0.9684 and prediction R2 = 0.9581). The optimum conditions for the maximum chemical oxygen demand sonocatalytic degradation of 85.82% were found to be pH 6.9, cupric oxide nanoparticles dosage of 0.05 gr L-1, and the ultrasonic frequency of 130 kHz at a contact time of 10 min.
PMID 28486846 / Amirian P, Bazrafshan E, Payandeh A